
Lock-Free Resizeable Concurrent Tries

Aleksandar Prokopec, Phil Bagwell, Martin Odersky

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract. This paper describes an implementation of a non-blocking
concurrent hash trie based on single-word compare-and-swap instruc-
tions in a shared-memory system. Insert, lookup and remove operations
modifying di�erent parts of the hash trie can be run completely inde-
pendently. Remove operations ensure that the unneeded memory is freed
and that the trie is kept compact. A pseudocode for these operations is
presented and a proof of correctness is given � we show that the imple-
mentation is linearizable and lock-free. Finally, benchmarks are presented
that compare concurrent hash trie operations against the corresponding
operations on other concurrent data structures.

1 Introduction

In the presence of multiple processors data has to be accessed concurrently.
Concurrent access to data requires synchronization in order to be correct. A tra-
ditional approach to synchronization is to use mutual exclusion locks. However,
locks induce a performance degradation if a thread holding a lock gets delayed
(e.g. by being preempted by the operating system). All other threads compet-
ing for the lock are prevented from making progress until the lock is released.
More fundamentally, mutual exclusion locks are not fault tolerant � a failure
may prevent progress inde�nitely.

A lock-free concurrent object guarantees that if several threads attempt to
perform an operation on the object, then at least some thread will complete the
operation after a �nite number of steps. Lock-free data structures are in general
more robust than their lock-based counterparts [10], as they are immune to
deadlocks, and una�ected by thread delays and failures. Universal methodologies
for constructing lock-free data structures exist [9], but they serve as a theoretical
foundation and are in general too ine�cient to be practical � developing e�cient
lock-free data structures still seems to necessitate a manual approach.

Trie is a data structure with a wide range of applications �rst developed
by Brandais [6] and Fredkin [7]. Hash array mapped tries described by Bagwell
[1] are a speci�c type of tries used to store key-value pairs. The search for the
key is guided by the bits in the hashcode value of the key. Each hash trie node
stores references to subtries inside an array, which is indexed with a bitmap. This
makes hash array mapped tries both space-e�cient and cache-aware � the bitmap
and the array can be stored within the same cache line. A similar approach
was taken in the dynamic array data structures [8]. Hash array mapped tries
are space-e�cient and ensure that they are compressed as elements are being



removed. They are well-suited for applications where the size bounds of the data
structure are not known in advance and vary through time. In this paper we
describe in detail a non-blocking implementation of the hash array mapped trie.

Our contributions are the following:

1. We introduce a completely lock-free concurrent hash trie data structure for a
shared-memory system based on single-word compare-and-swap instructions.
A complete pseudocode is included in the paper.

2. Our implementation maintains the space-e�ciency of sequential hash tries.
Additionally, remove operations check to see if the concurrent hash trie can
be contracted after a key has been removed, thus saving space and ensuring
that the depth of the trie is optimal.

3. There is no stop-the-world dynamic resizing phase during which no oper-
ation can be completed � the data structure grows with each subsequent
insertion and removal. This makes our data structure suitable for real-time
applications.

4. We present a proof of correctness and show that all operations are lineariz-
able and lock-free.

5. We present benchmarks that compare performance of concurrent hash tries
against other concurrent data structures. We interpret the results.

The rest of the paper is organized as follows. Section 2 describes sequential
hash tries and several attempts to make their operations concurrent. It then
presents case studies with concurrent hash trie operations. Section 3 presents the
algorithm for concurrent hash trie operations and describes it in detail. Section
4 presents the outline of the correctness proof � a complete proof is given in
the appendix. Section 5 contains experimental results and their interpretation.
Section 6 presents related work and section 7 concludes.

2 Discussion

Hash array mapped tries (from now on hash tries) described previously by Bag-
well [1] are trees that have 2 types of nodes � internal nodes and leaves. Leaves
store key-value bindings. Internal nodes have a 2W -way branching factor. In a
straightforward implementation, each internal node is a 2W -element array. Find-
ing a key proceeds in the following manner. If the internal node is at the root,
the initial W bits of the key hashcode are used as an index in the array. If the
internal node is at the level l, then W bits of the hashcode starting from the
position W ∗ l are used. This is repeated until a leaf or an empty entry is found.
Insertion and removal are similar.

Such an implementation is space-ine�cient � most entries in the internal
nodes are never used. To ensure space e�ciency, each internal node contains a
bitmap of length 2W . If a bit is set, then its corresponding array entry contains
an element. The corresponding entry for a bit on position i in the bitmap bmp
is calculated as #((i − 1) � bmp), where # is the bitcount and � is a logical
AND operation. The W bits of the hashcode relevant at some level l are used



to compute the index i as before. At all times an invariant is preserved that
the bitmap bitcount is equal to the array length. Typically, W is 5 since that
ensures that 32-bit integers can be used as bitmaps. An example hash trie is
shown in Fig. 1A. The used space is O(n). The expected depth is logarithmic in
the number of elements added � this drives the running time of operations.

root

C3

C2

C1

k1

k2

· · ·

· · ·A

root

CAS

B

root

I1

C1

k1

CAS

C

root

I1

C1

k1 k2

CAS

D

root

I1

C1

k1 I2

C2

k2 k3

CAS

E

root

I1

C1

k1 I2

C2

k3

CAS

F

root

I1

C1

k1 I2

C2

k3

CAS

G

root

I1

C1

k1 k3

CAS

H

root

I1

C1

k3

CAS

I

root

I1

J

Fig. 1. Hash trie and Ctrie examples

We want to preserve the nice properties of hash tries � space-e�ciency, cache-
awareness and the expected depth of O(log2W (n)), where n is the number of
elements stored in the trie and 2W is the bitmap length. We also want to make
hash tries a concurrent data structure that can be accessed by multiple threads.
In doing so, we avoid locks and rely solely on CAS instructions. Furthermore, we
ensure that the new data structure has the lock-freedom property. We call the
data structure a Ctrie. In the remainder of this chapter we give several examples.

Assume that we have a hash trie from Fig. 1A and that a thread T1 decides
to insert a new key below the node C1. One way to do this is to do a CAS on
the bitmap in C1 to set the bit that corresponds to the new entry in the array,
and then CAS the entry in the array to point to the new key. This requires all
the arrays to have additional empty entries, leading to ine�ciencies. A possible
solution is to keep a pointer to the array inside C1 and do a CAS on that pointer
with the updated copy of the array. The fundamental problem that still remains
is that such an insertion does not happen atomically. It is possible that some
other thread T2 also tries to insert below C1 after its bitmap is updated, but
before the array pointer is updated. Lock-freedom is not ensured if T2 were to
wait for T1 to complete.



Another solution is for T1 to create an updated version of C1 called C1' with
the updated bitmap and the new key entry in the array, and then do a CAS
in the entry within the C2 array that points to C1. The change is then done
atomically. However, this approach does not work. Assume that another thread
T2 decides to insert a key below the node C2 at the time when T1 is creating
C1'. To do this, it has to read C2 and create its updated copy C2'. Assume that
after that, T1 does the CAS in C2. The copy C2' will not re�ect the changes by
T1. Once T2 does a CAS in the C3 array, the key inserted by T1 is lost.

To solve this problem we de�ne a new type of a node that we call an indirec-
tion node. This node remains present within the Ctrie even if nodes above and
below it change. We now show an example of a sequence of Ctrie operations.

Every Ctrie is de�ned by the root reference (Fig. 1B). Initially, the root

is set to a special value called null. In this state the Ctrie corresponds to an
empty set, so all lookups fail to �nd a value for any given key and all remove
operations fail to remove a binding.

Assume that a key k1 has to be inserted. First, a new node C1 of type CNode
is created, so that it contains a single key k1 according to hash trie invariants.
After that, a new node I1 of type INode is created. The node I1 has a single
�eld main (Fig. 2) that is initialized to C1. A CAS instruction is then performed
at the root reference (Fig. 1B), with the expected value null and the new value
I1. If a CAS is successful, the insertion is completed and the Ctrie is in a state
shown in Fig. 1C. Otherwise, the insertion must be repeated.

Assume next that a key k2 is inserted such that its hashcode pre�x is di�erent
from that of k1. By the hash trie invariants, k2 should be next to k1 in C1. The
thread that does the insertion �rst creates an updated version of C1 and then does
a CAS at the I1.main (Fig. 1C) with the expected value of C1 and the updated
node as the new value. Again, if the CAS is not successful, the insertion process
is repeated. The Ctrie is now in the state shown in Fig. 1D.

If some thread inserts a key k3 with the same initial bits as k2, the hash trie
has to be extended with an additional level. The thread starts by creating a new
node C2 of type CNode containing both k2 and k3. It then creates a new node
I2 and sets I2.main to C2. Finally, it creates a new updated version of C1 such
that it points to the node I2 instead of the key k2 and does a CAS at I1.main
(Fig. 1D). We obtain a Ctrie shown in Fig. 1E.

Assume now that a thread T1 decides to remove k2 from the Ctrie. It creates
a new node C2' from C2 that omits the key k2. It then does a CAS on I2.main

to set it to C2' (Fig. 1E). As before, if the CAS is not successful, the operation
is restarted. Otherwise, k2 will no longer be in the trie � concurrent operations
will only see k1 and k3 in the trie, as shown in Fig. 1F. However, the key k3
could be moved further to the root - instead of being below the node C2, it could
be directly below the node C1. In general, we want to ensure that the path from
the root to a key is as short as possible. If we do not do this, we may end up
with a lot of wasted space and an increased depth of the Ctrie.

For this reason, after having removed a key, a thread will attempt to contract
the trie as much as possible. The thread T1 that removed the key has to check



whether or not there are less than 2 keys remaining within C2. There is only a
single key, so it can create a copy of C1 such that the key k3 appears in place of
the node I2 and then do a CAS at I1.main (Fig. 1F). However, this approach
does not work. Assume there was another thread T2 that decides to insert a new
key below the node I2 just before T1 does the CAS at I1.main. The key inserted
by T2 is lost as soon as the CAS at I1.main occurs.

To solve this, we relax the invariants of the data structure. We introduce a
new type of a node - a tomb node. A tomb node is simply a node that holds a
single key. No thread may modify a node of type INode if it contains a tomb
node. In our example, instead of directly modifying I1, thread T1 must �rst
create a tomb node that contains the key k3. It then does a CAS at I2.main
to set it to the tomb node. After having done this (Fig. 1G), T1 may create a
contracted version of C1 and do a CAS at I1.main, at that point we end up with
a trie of an optimal size (Fig. 1H). If some other thread T2 attempts to modify
I2 after it has been tombed, then it must �rst do the same thing T1 is attempting
to do - move the key k3 back below C2, and only then proceed with its original
operation. We call an INode that points to a tomb node a tomb-I-node. We say
that a tomb-I-node in the example above is resurrected.

If some thread decides to remove k1, it proceeds as before. However, even
though k3 now remains the only key in C1 (Fig. 1I), it does not get tombed. The
reason for this is that we treat nodes directly below the root di�erently. If k3
were next removed, the trie would end up in a state shown in Fig. 1J, with the
I1.main set to null. We call this type of an INode a null-I-node.

root: INode

structure INode {

main: MainNode

}

MainNode: CNode | SNode

structure CNode {

bmp: integer

array: Array[2^W]

}

structure SNode {

k: KeyType

v: ValueType

tomb: boolean

}

Fig. 2. Types and data structures

3 Algorithm

We present the pseudocode of the algorithm in �gures 3, 4 and 5. The pseudocode
assumes C-like semantics of conditions in if statements � if the �rst condition
in a conjunction fails, the second one is never evaluated. The pseudocode con-
tains pattern matching constructs used to match a node against its type. All
occurences of pattern matching can be replaced with a sequence of if-then-else
statements � we use pattern matching for conciseness. The colon (:) in the pat-
tern matching cases is read as has type. The keyword def denotes a procedure
de�nition. Reads and CAS instructions written in capitals are atomic � they



def insert(k, v)1

r = READ(root)2

if r = null ∨ isNullInode(r) {3

scn = CNode(SNode(k, v, ⊥))4

nr = INode(scn)5

if !CAS(root, r, nr) insert(k, v)6

} else if ¬iinsert(r, k, v, 0, null)7

insert(k, v)8

9

def remove(k)10

r = READ(root)11

if r = null return NOTFOUND12

else if isNullInode(r) {13

CAS(root, r, null)14

return remove(k)15

} else {16

res = iremove(r, k, 0, null)17

if res 6= RESTART return res18

else remove(k)19

}20

21

def lookup(k)22

r = READ(root)23

if r = null return NOTFOUND24

else if isNullInode(r) {25

CAS(root, r, null)26

return lookup(k)27

} else {28

res = ilookup(r, k, 0, null)29

if res 6= RESTART return res30

else return lookup(k)31

}32

33

def ilookup(i, k, lev, parent)34

READ(i.main) match {35

case cn: CNode =>36

flag, pos = flagpos(k.hc, lev, cn.bmp)37

if cn.bmp � flag = 0 return NOTFOUND38

cn.array(pos) match {39

case sin: INode =>40

return ilookup(sin, k, lev + W, i)41

case sn: SNode ∧ ¬sn.tomb =>42

if sn.k = k return sn.v43

else return NOTFOUND44

}45

case (sn: SNode ∧ sn.tomb) ∨ null =>46

if parent 6= null clean(parent)47

return RESTART48

}49

Fig. 3. Basic operations I

occur at one point in time. This high level pseudocode may not be optimal in
all cases � the source code contains a more e�cient implementation 1.

Operations start by reading the root (lines 2, 11 and 23). If the root is null
then the trie is empty, so neither removal nor lookup �nds a key. If the root

points to an INode that is set to null (as in Fig. 1J), then the root is set back to
just null before repeating. In both the previous cases, an insertion will replace
the root reference with a new CNode with the appropriate key.

If the root is neither null nor a null-I-node then the node below the root
I-node is read (lines 35, 51 and 79), and we proceed casewise. If the node pointed
at by the I-node is a CNode, an appropriate entry in its array must be found.
The method flagpos computes the values flag and pos from the hashcode hc
of the key, bitmap bmp of the cnode and the current level lev. The relevant
flag in the bitmap is de�ned as (hc >> (k · lev)) � ((1 << k) − 1), where 2k

is the length of the bitmap. The position pos within the array is given by the
expression #((flag − 1) � bmp), where # is the bitcount. The flag is used to
check if the appropriate branch is in the CNode (lines 38, 54, 82). If it is not,
lookups and removes end, since the desired key is not in the Ctrie. An insert
creates an updated copy of the current CNode with the new key. If the branch
is in the trie, pos is used as an index into the array. If an I-node is found, we
repeat the operation recursively. If a key-value binding (an SNode) is found, then
a lookup compares the keys and returns the binding if they are the same. An
insert operation will either replace the old binding if the keys are the same, or

1 See: http://github.com/axel22/Ctries



def iinsert(i, k, v, lev, parent)50

READ(i.main) match {51

case cn: CNode =>52

flag, pos = flagpos(k.hc, lev, cn.bmp)53

if cn.bmp � flag = 0 {54

nsn = SNode(k, v, ⊥)55

narr = cn.array.inserted(pos, nsn)56

ncn = CNode(narr, bmp | flag)57

return CAS(i.main, cn, ncn)58

}59

cn.array(pos) match {60

case sin: INode =>61

return iinsert(sin, k, v, lev + W, i)62

case sn: SNode ∧ ¬sn.tomb =>63

nsn = SNode(k, v, ⊥)64

if sn.k = k {65

ncn = cn.updated(pos, nsn)66

return CAS(i.main, cn, ncn)67

} else {68

nin = INode(CNode(sn, nsn, lev + W))69

ncn = cn.updated(pos, nin)70

return CAS(i.main, cn, ncn)71

}72

}73

case (sn: SNode ∧ sn.tomb) ∨ null =>74

if parent 6= null clean(parent)75

return ⊥76

}77

def iremove(i, k, lev, parent)78

READ(i.main) match {79

case cn: CNode =>80

flag, pos = flagpos(k.hc, lev, cn.bmp)81

if cn.bmp � flag = 0 return NOTFOUND82

res = cn.array(pos) match {83

case sin: INode =>84

return iremove(sin, k, lev + W, i)85

case sn: SNode ∧ ¬sn.tomb =>86

if sn.k = k {87

narr = cn.array.removed(pos)88

ncn = CNode(narr, bmp ^ flag)89

if cn.array.length = 1 ncn = null90

if CAS(i.main, cn, ncn) return sn.v91

else return RESTART92

} else return NOTFOUND93

}94

if res = NOTFOUND ∨ res = RESTART return res95

if parent ne null ∧ tombCompress()96

contractParent(parent, in, k.hc, lev - W)97

case (sn: SNode ∧ sn.tomb) ∨ null =>98

if parent 6= null clean(parent)99

return RESTART100

}101

Fig. 4. Basic operations II

otherwise extend the trie below the CNode. A remove compares the keys � if they
are the same it replaces the CNode with its updated version without the key.

After a key was removed, the trie must be contracted. A remove �rst attempts
to create a tomb from the current CNode. It reads the node below the current I-
node to check if it is still a CNode. It then calls toWeakTombed that creates a weak
tomb from the given CNode. A weak tomb is de�ned as follows. If the number
of nodes below the CNode that are not null-I-nodes is greater than 1, then it is
the CNode itself � we say that there is nothing to entomb. If the number of such
nodes is 0, then the weak tomb is null. Otherwise, if the single branch below
the CNode is a key-value binding or a tomb-I-node (also called a singleton), the
weak tomb is the tomb node with that binding. If the single branch is another
CNode, a weak tomb is a copy of the current CNode without the null-I-nodes.

The procedure tombCompress continually tries to entomb the current CNode
until it �nds out that there is nothing to entomb or it succeeds. The CAS in
line 132 corresponds to the one in Fig. 1F. If it succeeds and the weak tomb was
either a null or a tomb node, it will return true, meaning that the parent node
should be contracted. The contraction is done in contractParent, that checks if
the I-node is still reachable from its parent and then contracts the CNode below
the parent - it removes the null-I-node (line 148) or resurrects a tomb-I-node
into an SNode (line 152). The latter corresponds to the CAS in Fig. 1G.

If any operation encounters a null or a tomb node, it attempts to �x the
Ctrie before proceeding, since the Ctrie is in a relaxed state. A tomb node may



def toCompressed(cn)102

num = bit#(cn.bmp)103

if num = 1 ∧ isTombInode(cn.array(0))104

return cn.array(0).main105

ncn = cn.filtered(_.main 6= null)106

rarr = ncn.array.map(resurrect(_))107

if bit#(ncn.bmp) > 0108

return CNode(rarr, ncn.bmp)109

else return null110

111

def toWeakTombed(cn)112

farr = cn.array.filtered(_.main 6= null)113

nbmp = cn.bmp.filtered(_.main 6= null)114

if farr.length > 1 return cn115

if farr.length = 1116

if isSingleton(farr(0))117

return farr(0).tombed118

else CNode(farr, nbmp)119

return null120

121

def clean(i)122

m = READ(i.main)123

if m ∈ CNode124

CAS(i.main, m, toCompressed(m))125

126

def tombCompress(i)127

m = READ(i.main)128

if m 6∈ CNode return ⊥129

mwt = toWeakTombed(m)130

if m = mwt return ⊥131

if CAS(i.main, m, mwt) mwt match {132

case null ∨ (sn: SNode ∧ sn.tomb) =>133

return >134

case _ => return ⊥135

} else return tombCompress()136

137

def contractParent(parent, i, hc, lev)138

m, pm = READ(i.main), READ(parent.main)139

pm match {140

case cn: CNode =>141

flag, pos = flagpos(k.hc, lev, cn.bmp)142

if bmp � flag = 0 return143

sub = cn.array(pos)144

if sub 6= i return145

if m = null {146

ncn = cn.removed(pos)147

if !CAS(parent.main, cn, ncn)148

contractParent(parent, i, hc, lev)149

} else if isSingleton(m) {150

ncn = cn.updated(pos, m.untombed)151

if !CAS(parent.main, cn, ncn)152

contractParent(parent, i, hc, lev)153

}154

case _ => return155

}156

Fig. 5. Compression operations

have originated from a remove operation that will attempt to contract the tomb
node at some time in the future. Rather than waiting for that remove to do its
work, the current operation contracts the tomb itself. It will invoke the clean

operation on the parent I-node, which will attempt to exchange the CNode below
the parent I-node with its compression. A CNode compression is de�ned as follows
� if the CNode has a single tomb node directly beneath, then it is that tomb node.
Otherwise, the compression is the copy of the CNode without the null-I-nodes
(the filtered call in the toCompressed procedure) and with all the tomb-I-
nodes resurrected to regular key nodes (this is what the map and resurrect

calls do). Going back to our previous example, if in Fig. 1G some other thread
were to attempt to write to I2, it would �rst do a clean operation on the parent
I1 of I2 � it would contract the trie in the same way as the remove would have.

4 Correctness

As illustrated by the examples in the previous section, designing a correct lock-
free algorithm is not straightforward. One of the reasons for this is that all
possible interleavings of steps of di�erent threads executing the operations have
to be considered. For brevity, this section gives only the outline of the correct-
ness proof. There are three main criteria for correctness. Safety means that the
Ctrie corresponds to some abstract set of keys and that all operations change
the corresponding abstract set of keys consistently. An operation is linearizable



if any external observer can only observe the operation as if it took place instan-
taneously at some point between its invocation and completion [9] [11]. Lock-
freedom means that if some number of threads execute operations concurrently,
then after a �nite number of steps some operation must complete [9].

We assume that the Ctrie has a branching factor 2W . Each node in the Ctrie
is identi�ed by its type, level in the Ctrie l and the hashcode pre�x p. The
hashcode pre�x is the sequence of branch indices that have to be followed from
the root in order to reach the node. For a C-node cnl,p and a key k with the
hashcode h = r0 · r1 · · · rn, we denote cn.sub(k) as the branch with the index rl
or null if such a branch does not exist. We de�ne the following invariants:

INV1 For every I-node inl,p, inl,p.main is a C-node cnl,p, a tombed S-node sn† or
null.

INV2 For every C-node the length of the array is equal to the bitcount in the bitmap.
INV3 If a �ag i in the bitmap of cnl,p is set, then corresponding array entry contains

an I-node inl+W,p·r or an S-node.
INV4 If an entry in the array in cnl,p contains an S-node sn, then p is the pre�x of

the hashcode sn.k.
INV5 If an I-node inl,p contains an S-node sn, then p is the pre�x of the hashcode

sn.k.

We say that the Ctrie is valid if and only if the invariants hold. The relation
hasKey(node, x) holds if and only if the key x is within an S-node reachable from
node. A valid Ctrie is consistent with an abstract set A if and only if ∀k ∈ A
the relation hasKey(root, k) holds and ∀k /∈ A it does not. A Ctrie lookup is
consistent with the abstract set semantics if and only if it �nds the keys in
the abstract set and does not �nd other keys. A Ctrie insertion or removal is
consistent with the abstract set semantics if and only if it produces a new Ctrie
consistent with a new abstract set with or without the given key, respectively.

Lemma 1. If an I-node in is either a null-I-node or a tomb-I-node at some time
t0 then ∀t > t0 in.main is never written to. We refer to such I-nodes as nonlive.

Lemma 2. C-nodes and S-nodes are immutable � once created, they do not
change the value of their �elds.

Lemma 3. Invariants INV1-3 always hold.

Lemma 4. If a CAS instruction makes an I-node in unreachable from its parent
at some time t0, then in is nonlive at t0.

Lemma 5. Reading a cn such that cn.sub(k) = sn and k = sn.k at some time
t0 means that hasKey(root, k) holds at t0.

For a given Ctrie, we say that the longest path for a hashcode h = r0 ·r1 · · · rn,
length(ri) = W , is the path from the root to a leaf such that at each C-node
cni,p the branch with the index ri is taken.

Lemma 6. Assume that the Ctrie is an valid state. Then every longest path
ends with an S-node, C-node or null.



Lemma 7. Assume that a C-node cn is read from inl,p.main at some time t0
while searching for a key k. If cn.sub(k) = null then hasKey(root, k) is not in
the Ctrie at t0.

Lemma 8. Assume that the algorithm is searching for a key k and that an S-
node sn is read from cn.array(i) at some time t0 such that sn.k 6= k. Then the
relation hasKey(root, k) does not hold at t0.

Lemma 9. 1. Assume that one of the CAS in lines 58 and 71 succeeds at time
t1 after in.main was read in line 51 at time t0. Then ∀t, t0 ≤ t < t1, relation
hasKey(root, k) does not hold.

2. Assume that the CAS in lines 67 succeeds at time t1 after in.main was
read in line 51 at time t0. Then ∀t, t0 ≤ t < t1, relation hasKey(root, k) holds.

3. Assume that the CAS in line 91 succeeds at time t1 after in.main was read
in line 79 at time t0. Then ∀t, t0 ≤ t < t1, relation hasKey(root, k) holds.

Lemma 10. Assume that the Ctrie is valid and consistent with some abstract
set A ∀t, t1 − δ < t < t1. CAS instructions from lemma 9 induce a change into
a valid state that is consistent with the abstract set semantics.

Lemma 11. Assume that the Ctrie is valid and consistent with some abstract
set A ∀t, t1 − δ < t < t1. If one of the operations clean, tombCompress or
contractParent succeeds with a CAS at t1, the Ctrie will remain valid and con-
sistent with the abstract set A at t1.

Corollary 1. Invariants INV4,5 always hold due to lemmas 10 and 11.

Theorem 1 (Safety). At all times t, a Ctrie is in a valid state S, consistent
with some abstract set A. All Ctrie operations are consistent with the semantics
of the abstract set A.

Theorem 2 (Linearizability). Ctrie operations are linearizable.

Lemma 12. If a CAS that does not cause a consistency change in one of the
lines 58, 67, 71, 125, 132, 148 or 152 fails at some time t1, then there has been
a state (con�guration) change since the time t0 when a respective read in one of
the lines 51, 51, 51, 123, 128, 139 or 139 occured.

Lemma 13. In each operation there is a �nite number of execution steps be-
tween consecutive CAS instructions.

Corollary 2. There is a �nite number of execution steps between two state
changes. This does not imply that there is a �nite number of execution steps
between two operations. A state change is not necessarily a consistency change.

We de�ne the total path length d as the sum of the lengths of all the
paths from the root to some leaf. Assume the Ctrie is in a valid state. Let n
be the number of reachable null-I-nodes in this state, t the number of reachable
tomb-I-nodes, l the number of live I-nodes, r the number of single tips of any
length and d the total path length. We denote the state of the Ctrie as Sn,t,l,r,d.
We call the state S0,0,l,r,d the clean state.



Lemma 14. Observe all CAS instructions that never cause a consistency change
and assume they are successful. Assuming there was no state change since read-
ing in prior to calling clean, the CAS in line 125 changes the state of the Ctrie
from the state Sn,t,l,r,d to either Sn+j,t,l,r−1,d−1 where r > 0, j ∈ {0, 1} and
d ≥ 1, or to Sn−k,t−j,l,r,d′≤d where k ≥ 0, j ≥ 0, k + j > 0, n ≥ k and t ≥ j.
Furthermore, the CAS in line 14 changes the state of the Ctrie from S1,0,0,0,1 to
S0,0,0,0,0. The CAS in line 26 changes the state from S1,0,0,0,1 to S0,0,0,0,0. The
CAS in line 132 changes the state from Sn,t,l,r,d to either Sn+j,t,l,r−1,d−j where
r > 0, j ∈ {0, 1} and d ≥ j, or to Sn−k,t,l,r,d′≤d where k > 0 and n ≥ k. The
CAS in line 148 changes the state from Sn,t,l,r,d to Sn−1,t,l,r+j,d−1 where n > 0
and j ≥ 0. The CAS in line 152 changes the state from Sn,t,l,r to Sn,t−1,l,r+j,d−1
where j ≥ 0.

Lemma 15. If the Ctrie is in a clean state and n threads are executing op-
erations on it, then some thread will execute a successful CAS resulting in a
consistency change after a �nite number of execution steps.

Theorem 3 (Lock-freedom). Ctrie operations are lock-free.

5 Experiments

We show benchmark results in Fig. 6. All the measurements were performed on
a quad-core 2.67 GHz i7 processor with hyperthreading. We followed established
performance measurement methodologies [2]. We compare the performance of
Ctries against that of ConcurrentHashMap and ConcurrentSkipListMap [3] [4]
data structures from the Java standard library.

In the �rst experiment, we insert a total of N elements into the data struc-
tures. The insertion is divided equally among P threads, where P ranges from
1 to 8. The results are shown in Fig. 6A-D. Ctries outperform concurrent skip
lists for P = 1 (Fig. 6A). We argue that this is due to a fewer number of indi-
rections in the Ctrie data structure. A concurrent skip list roughly corresponds
to a balanced binary tree that has a branching factor 2. Ctries normally have a
branching factor 32, thus having a much lower depth. A lower depth means less
indirections and consequently fewer cache misses when searching the Ctrie.

We can also see that the Ctrie sometimes outperforms a concurrent hash
table for P = 1. The reason is that the hash table has a �xed size and is
resized once the load factor is reached � roughly speaking, a new table has to be
allocated and all the elements from the previous hash table have to be copied
into the new hash table. To do this, parts of the hash table have to be locked �
other threads adding new elements into the table have to wait until the resize
completes. This problem is much more apparent in Fig. 6B where P = 8. Fig.
6C,D show how the insertion scales for the number of elements N = 200k and
N = 1M , respectively. Due to the use of hyperthreading on the i7, we do not get
signi�cant speedups when P > 4 for these data structures. We next measure the
performance for the remove operation (Fig. 6E-H). Each data structure starts
with N elements and then emptied concurrently by P threads. The keys being



removed are divided equally among the threads. For P = 1 Ctries are clearly
outperformed by both other data structures. However, it should be noted that
concurrent hash table does not shrink once the number of keys becomes much
lower than the table size. This is space-ine�cient � a hash table contains many
elements at some point during the runtime of the application will continue to
use the memory it does not need until the application ends. The slower Ctrie
performance seen in Fig. 6E for P = 1 is attributed to the additional work the
remove operation does to keep the Ctrie compact. However, Fig. 6F shows that
the Ctrie remove operation scales well for P = 8, as it outperforms both skip
list and hash table removals. This is also apparent in Fig. 6G,H. In the next
experiment, we populate all the data structures with N elements and then do a
lookup for every element once. The set of elements to be looked up is divided
equally among P threads. From Fig. 6I-L it is apparent that concurrent hash
tables have a much more e�cient lookups than other data structures. This is
not surprising since they are a �at data structure � a lookup typically consists
of a single read in the table, possibly followed by traversing the collision chain
within the bucket. Although a Ctrie lookup outperforms a concurrent skip list
when P = 8, it still has to traverse more indirections than a hash table. Finally,
we do a series of benchmarks with both lookups and insertions to determine the
percentage of lookups for which the concurrent hash table performance equals
that of concurrent tries. Our test inserts new elements into the data structures
using P threads. A total of N elements are inserted. After each insert, a lookup
for a random element is performed r times, where r is the ratio of lookups per
insertion. Concurrent skip lists scaled well in these tests but had low absolute
performance, so they are excluded from the graphs for clarity. When using P = 2
threads, the ratio where the running time is equal for both concurrent hash
tables and concurrent tries is r = 2. When using P = 4 threads this ratio is
r = 5 and for P = 8 the ratio is r = 9. As the number of threads increases,
more opportunity for parallelism is lost during the resize phase in concurrent
hash tables, hence the ratio increases. This is shown in Fig. 6M-O. In the last
benchmark (Fig. 6P) we preallocate the array for the concurrent hash table to
avoid resize phases � in this case the hash table outperforms the concurrent trie.
The performance gap decreases as the number of threads approaches P = 8. The
downside is that a large amount of memory has to be used for the hash table
and the size needs to be known in advance.

6 Related work

Concurrent programming techniques and important results in the area are cov-
ered by Shavit and Herlihy [9]. An overview of concurrent data structures is
given by Moir and Shavit [10]. There is a body of research available focusing
on concurrent lists, queues and concurrent priority queues [5] [10]. While linked
lists are ine�cient as sets or maps because they do not scale well, the latter two
do not support the basic operations on sets and maps, so we exclude these from
the further discussion and focus on more suitable data structures.



Hash tables are typically resizeable arrays of buckets. Each bucket holds
some number of elements that is expected to be constant. The constant number
of elements per bucket necessitates resizing the data structure. Sequential hash
tables amortize the cost of resizing the table over other operations [14], achieving
constant-time operations. While the individual concurrent hash table operations
such as insertion or removal can be performed in a lock-free manner as shown
by Maged [4], resizing is typically implemented with a global lock. Although the
cost of resize is amortized against operations by one thread, this approach does
not guarantee horizontal scalability. Lea developed an extensible hash algorithm
that allows concurrent searches during the resizing phase, but not concurrent
insertions and removals [3]. Shalev and Shavit propose split-ordered lists which
keep a table of hints into a linked list in a way that does not require rearranging
the elements of the linked list when resizing [15]. This approach is quite inno-
vative, but it is unclear how to shrink the hint table if most of the keys are
removed, while preserving lock-freedom.

Skip lists are a data structure that stores elements in a linked list. There are
multiple levels of linked lists that allow logarithmic-time insertions, removals
and lookups. Skip lists were originally invented by Pugh [16]. Pugh proposed
concurrent skip lists which achieve synchronization through the use of locks
[17]. Concurrent non-blocking skip lists were later implemented by Lev, Herlihy,
Luchangco and Shavit [18] and Lea [3]. Concurrent binary search trees were pro-
posed by Kung and Lehman [19] � their implementation uses a constant number
of locks at a time that exclude other insertion and removal operations, while
lookups can proceed concurrently. Bronson et al. presented a scalable concur-
rent implementation of an AVL tree based on transactional memory mechanisms
that require a �xed number of locks to perform deletions [20]. Recently, the �rst
non-blocking implementation of a binary search tree was proposed [21].

Tries were originally proposed by Brandais [6] and Fredkin [7]. Trie hashing
was applied to accessing �les stored on the disk by Litwin [12]. Litwin, Sagiv
and Vidyasankar implemented trie hashing in a concurrent setting [13], however,
they did so by using mutual exclusion locks. Hash array mapped trees, or hash
tries, are tries for shared-memory proposed by Bagwell [1]. To our knowledge,
there is no nonblocking concurrent implementation of hash tries prior our work.

7 Conclusion

We described a lock-free concurrent implementation of the hash trie data struc-
ture. Our implementation supports insertion, remove and lookup operations. It is
space-e�cient in the sense that it keeps a minimal amount of information in the
internal nodes. It is compact in the sense that after all removal operations com-
plete, all paths from the root to a leaf containing a key are as short as possible.
Operations are worst-case logarithmic with a low constant factor (O(log32 n)).
Its performance is comparable to that of the similar concurrent data structures.
The data structure grows dynamically � it uses no locks and there is no resizing
phase. We proved that it is linearizable and lock-free.



In the future we plan to extend the algorithm with operations like move
key, that reassigns a value from one key to another atomically. One research
direction is supporting e�cient aggregation operations on the keys stored in the
Ctrie. One example of such an operation is the size of the Ctrie. Finally, we
plan to develop an e�cient lock-free snapshot operation for the concurrent trie
that allows traversal of all the keys present in the data structure at the time at
which the snapshot was created. One possible approach to doing so is to, roughly
speaking, keep a partial history in the indirection nodes.

References

1. P. Bagwell: Ideal Hash Trees. 2002.
2. A. Georges, D. Buytaert, L. Eeckhout: Statistically Rigorous Java Performance

Evaluation. OOPSLA, 2007.
3. Doug Lea's Home Page: http://gee.cs.oswego.edu/
4. Maged M. Michael: High Performance Dynamic Lock-Free Hash Tables and List-

Based Sets. SPAA, 2002.
5. Timothy L. Harris: A Pragmatic Implementation of Non-Blocking Linked-Lists.

IEEE Symposium on Distributed Computing, 2001.
6. R. Brandais: File searching using variable length keys. Proceedings of Western Joint

Computer Conference, 1959.
7. E. Fredkin: Trie memory. Communications of the ACM, 1960.
8. A. Silverstein: Judy IV Shop Manual. 2002.
9. N. Shavit, M. Herlihy: The Art of Multiprocessor Programming. Morgan Kaufmann,

2008.
10. M. Moir, N. Shavit: Concurrent data structures. Handbook of Data Structures and

Applications, Chapman and Hall, 2004.
11. M. Herlihy, J. Wing: Linearizability: A Correctness Condition for Concurrent Ob-

jects. ACM Transactions on Programming Languages and Systems, 1990.
12. W. Litwin: Trie Hashing. ACM, 1981.
13. W. Litwin, Y. Sagiv, K. Vidyasankar: Concurrency and Trie Hashing. ACM, 1981.
14. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms,

2nd Edition. The MIT Press, 2001.
15. O. Shalev, N. Shavit: Split-Ordered Lists: Lock-Free Extensible Hash Tables. Jour-

nal of the ACM, vol. 53., no. 3., 2006.
16. William Pugh: Skip Lists: A Probabilistic Alternative to Balanced Trees. Commu-

nications ACM, volume 33, 1990.
17. William Pugh: Concurrent Maintenance of Skip Lists. 1990.
18. M. Herlihy, Y. Lev, V. Luchangco, N. Shavit: A Provably Correct Scalable Con-

current Skip List. OPODIS, 2006.
19. H. Kung, P. Lehman: Concurrent manipulation of binary search trees. ACM, 1980.
20. N. G. Bronson, J. Casper, H. Cha�, K. Olukotun: A Practical Concurrent Binary

Search Tree. ACM, 2009.
21. F. Ellen, P. Fatourou, E. Ruppert, F. van Breugel: Non-blocking binary search

trees. PODC, 2010.



0 0.5 1

·106

0

100

200

300

A #elem

t/
m
s

0 0.5 1

·106

0

50

100

150

B #elem

2 4 6 8

20

40

C #proc

2 4 6 8

100

200

D #proc

0 0.5 1

·106

0

100

200

300

E #elem

t/
m
s

0 0.5 1

·106

0

20

40

60

80

F #elem

2 4 6 8

20

40

G #proc

2 4 6 8

100

200

300

H #proc

0 0.5 1

·106

0

50

100

150

I #elem

t/
m
s

0 0.5 1

·106

0

20

40

J #elem

2 4 6 8

10

20

30

K #proc

2 4 6 8

50

100

150

L #proc

2 4 6 8

200

400

600

M #proc

t/
m
s

2 4 6 8

500

1,000

N #proc

2 4 6 8

500

1,000

1,500

2,000

O #proc

2 4 6 8

200

400

600

P #proc

Fig. 6. Quad-core i7 microbenchmarks � ConcurrentHashMap(−),
ConcurrentSkipList(◦), Ctrie(×): A) insert, P=1; B) insert, P=8; C) insert,
N=200k; D) insert, N=1M; E) remove, P=1; F) remove, P=8; G) remove, N=200k,
H) remove, N=1M; I) lookup, P=1; J) lookup, P=8; K) lookup, N=200k; L) lookup,
N=1M; M) insert/lookup, ratio=1/2, N=1M; N) insert/lookup, ratio=1/5, N=1M;
O) insert/lookup, ratio=1/9, N=1M; P) insert/lookup with preallocated tables,
ratio=1/2, N=1M


